Study on airflow and inhaled particle deposition within realistic human upper respiratory tract
نویسندگان
چکیده
Based on the CT (Computerized Tomography) scanned images of a 19-years-old healthy boy, a realistic geometric model of URT from nasal cavity to the upper six-generation bronchial is rebuilt. To investigate airflow and particle deposition in the obtained realistic human upper respiratory tract, RNG k-ε turbulence model was used to describe the primary flow and particle deposition under three breathing intensity such as 15 L/min, 30 L/min and 60 L/min. The particle is tracked and analyzed in the Lagrangian frame. The velocity fields of airflow under different airflow rates were computed and discussed. The trapping of particles with diameter 1μm on the wall surfaces was monitored, and the locations of trapping in different region were visualized. In order to study the characteristics of particles movement and the effect of particles diameter on the deposition pattern, eleven kinds of sphere particles with different diameters are selected as research object. The diameters of selected particles as follows: 0.1μm, 0.5μm, 1μm, 2.5μm, 3μm, 3.5μm, 4μm, 4.5μm, 5μm, 6.5μm and 8μm. The variation of inhalable particles deposition in realistic human upper respiratory tract with respiratory intensity and particle size was researched and compared.
منابع مشابه
Micro Particles Transport and Deposition in Realistic Geometry of Human Upper Airways
Realistic geometry of human upper airways from mouth to the end of trachea was reconstructed by implementing the CT-Scan images of a male subject. A computational model for analyzing the airflow in the airways was developed and several simulations were performed. To capture the anisotropy of the inhaled airflow in the upper airways, the Reynolds stress transport model of turbulence was used ...
متن کاملFactors influencing the deposition of inhaled particles.
Because the initial deposition pattern of inhaled particles of various toxic agents determines their future clearance and insult to tissue, respiratory tract deposition is important in assessing the potential toxicity of inhaled aerosols. Factors influencing the deposition of inhaled particles can be classified into three main areas: (1) the physics of aerosols, (2) the anatomy of the respirato...
متن کاملParticle Deposition in Human Respiratory Tract: Effect of Water- Soluble Fraction
In the nearly saturated human respiratory tract, the presence of water-soluble substances in inhaled aerosols can cause change in the size distribution of particles. This consequently alters the lung deposition profiles of the inhaled airborne particles. The magnitude of particle deposition in the lung is affected by the soluble component present in the particle. This is estimated by a numerica...
متن کاملDeposition and clearance of inhaled particles.
Theoretical models of respiratory tract deposition of inhaled particles are compared to experimental studies of deposition patterns in humans and animals, as governed principally by particle size, density, respiratory rate and flow parameters. Various models of inhaled particle deposition make use of approximations of the respiratory tract to predict fractional deposition caused by fundamental ...
متن کاملEffective of Inhaling Patterns on Aerosol Drug Delivery :cfd Simulation
Inhaled Pharmaceutical Aerosols (IPAs) delivery has great potential in treatment of a variety of respiratory diseases, including asthma, pulmonary diseases, and allergies. Aerosol delivery has many advantages. It delivers medication directly to where it is needed and it is effective in much lower doses than required for oral administration. Currently, there are several types of IPA delivery sys...
متن کامل